Structural Changes and Proton Transfer in Cytochrome c Oxidase

نویسندگان

  • Jóhanna Vilhjálmsdóttir
  • Ann-Louise Johansson
  • Peter Brzezinski
چکیده

In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that control the alternating proton access to the two sides of the membrane. Such redox-induced structural changes have been observed in X-ray crystallographic studies at residues 423-425 (in the R. sphaeroides oxidase), located near heme a. The aim of the present study is to investigate the functional effects of these structural changes on reaction steps associated with proton pumping. Residue Ser425 was modified using site-directed mutagenesis and time-resolved spectroscopy was used to investigate coupled electron-proton transfer upon reaction of the oxidase with O2. The data indicate that the structural change at position 425 propagates to the D proton pathway, which suggests a link between redox changes at heme a and modulation of intramolecular proton-transfer rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site.

The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replace...

متن کامل

Protonmotive cooperativity in cytochrome c oxidase.

Cooperative linkage of solute binding at separate binding sites in allosteric proteins is an important functional attribute of soluble and membrane bound hemoproteins. Analysis of proton/electron coupling at the four redox centers, i.e. Cu(A), heme a, heme a(3) and Cu(B), in the purified bovine cytochrome c oxidase in the unliganded, CO-liganded and CN-liganded states is presented. These studie...

متن کامل

Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase.

Cytochrome c oxidase, the terminal protein in the respiratory chain, converts oxygen into water and helps generate the electrochemical gradient used in the synthesis of ATP. The catalytic action of cytochrome c oxidase involves electron transfer, proton transfer, and O2 reduction. These events trigger specific molecular changes at the active site, which, in turn, influence changes throughout th...

متن کامل

Redox-driven proton pumping by heme-copper oxidases.

One of the key problems of molecular bioenergetics is the understanding of the function of redox-driven proton pumps on a molecular level. One such class of proton pumps are the heme-copper oxidases. These enzymes are integral membrane proteins in which proton translocation across the membrane is driven by electron transfer from a low-potential donor, such as, e.g. cytochrome c, to a high-poten...

متن کامل

Kinetic coupling between electron and proton transfer in cytochrome c oxidase: simultaneous measurements of conductance and absorbance changes.

Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015